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Abstract

The method of modelling the temperature distribution in resistive thin-film thermal sensors is presented. This method is based
division of the sensor into the unit subdomains whose structure is substituted by an equivalent structure. In its turn, the equivalen
of the unit subdomain is divided into four rectangular regions. For each region, the analytical expression of the temperature d
is determined using the Fourier method. In addition, each heat flux density between the adjacent regions and between the regio
ambient air is defined as the sum of orthogonal functions with unknown weighting coefficients. To find the unknown weighting coe
the adjoint boundary conditions on the boundaries between the adjacent regions and the Newton boundary conditions on the
between the regions and the ambient air are used. In general, the determination of the weighting coefficients is reduced to solving
linear equations. The present method is used to determine the temperature distribution in the realistic resistive thin-film thermal s
the dependencies of the overheating temperature in the centre of meander strips of this sensor on a number of the parameters: th
current, the thermal conductivity and the thickness of the substrate, the convective heat transfer coefficient, the surface temper
object under investigation, the width of the meander strip, and the distance between meander strips.
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

Resistive thermal sensors are widely used for measur
temperature of various objects [1–3]. The operation princ
of the sensors is founded on the dependence of the resis
of some materials on the temperature. Among these, the
sors based on pure metals or alloys have the highest acc
in measuring a temperature. The temperature dependen
their resistance is approximated by the following linear fu
tion

R = R0
[
1+ α(T − T0)

]
(1)

where R and R0 are the resistances of the sensor at
temperaturesT and T0, respectively,α is the temperature
resistance coefficient of resistive material,T is the operat-
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ing temperature of the sensor,T0 = 273.15 K is the absolute
temperature corresponding 0◦C.

The resistive thermal sensors based on pure metals o
loys are made in two design versions:

(1) bulk sensors made by winding a microwire;
(2) thin-film sensors made by a vacuum deposition of p

metals or alloys on insulated substrates.

The resistive thin-film thermal sensors are the m
widely used to measure a surface temperature [2,3]. In
case, it is important that a measurement error should b
small as possible. The basic component of the measure
error is the error due to the self-heating by a measuring
rent. To exactly estimate this error it is necessary to kn
the temperature distribution in the sensor. The experim
tal investigation of the temperature distribution presents
difficult problem due to the small dimensions of the sen
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Nomenclature

A,B,C,D,E,F submatrices of coefficients
a distance between meander strips . . . . . . . . . . . m
B0 coefficient . . . . . . . . . . . . . . . . . . . . . . . . . W·m−2

B1 coefficient . . . . . . . . . . . . . . . . . . . . . W·m−2·K−1

b width of the meander strip . . . . . . . . . . . . . . . . m
bj width of the regionj . . . . . . . . . . . . . . . . . . . . . m
ds thickness of the substrate . . . . . . . . . . . . . . . . . m
dc thickness of the connective layer . . . . . . . . . . m
h convective heat transfer

coefficient . . . . . . . . . . . . . . . . . . . . W·m−2·K −1

I measuring current . . . . . . . . . . . . . . . . . . . . . . . . A
kf form factor of the meander
lj length of the regionj . . . . . . . . . . . . . . . . . . . . m
lmd length of the middle line of the meander . . . m
M matrix of coefficients
Pts heat power generated by the sensor . . . . . . . . W
q(j,a) heat flux density between the regionj and the

ambient air . . . . . . . . . . . . . . . . . . . . . . . . . W·m−2

qsh heat power per unit area of the sensor . W·m−2

R resistance of the sensor . . . . . . . . . . . . . . . . . . .�

R0 resistance of the sensor at temperatureT0 . . �

Sts area of the resistive layer . . . . . . . . . . . . . . . . m2

T operating temperature of the sensor . . . . . . . . K
T0 absolute temperature corresponding 0◦C,

T0 = 273.15 K
Tj temperature of the regionj . . . . . . . . . . . . . . . K
Ta temperature of the ambient air . . . . . . . . . . . . . K
Ts surface temperature of the object under

investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K

�T overheating temperature . . . . . . . . . . . . . . . . . . K
�Tcm overheating temperature in the centre of the

meander strip . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
�Tlm overheating temperature of the resistive layer

determined from the lamped model . . . . . . . . K
xj , yj Cartesian co-ordinates of the regionj . . . . . . m
0 zero submatrix or subvector

Greek symbols

α temperature resistance coefficient of the
resistive material . . . . . . . . . . . . . . . . . . . . . . K−1

� vector or subvector of weighting coefficients
δ weighting coefficient . . . . . . . . . . . . . . . . K·m−1

λc thermal conductivity of the material of the
connective layer . . . . . . . . . . . . . . . W·m−1·K−1

λj thermal conductivity of the material of the
regionj . . . . . . . . . . . . . . . . . . . . . . . W·m−1·K−1

λs thermal conductivity of the material of the
substrate . . . . . . . . . . . . . . . . . . . . . . W·m −1·K−1

� vector or subvector of right parts

Subscripts

j, s, t region number
k,m summation indices

Superscripts

(j, t) boundary between the regionsj andt

(j, a) boundary between the regionj and the ambient
air
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and the small difference between the sensor temperatur
the surface temperature of an object under investigation.
only possible method for solving this problem is mathem
ical simulation.

Presently, for modelling the temperature distribution
resistive thin-film thermal sensors the following methods
used:

(1) methods based on the electro-thermal analogy;
(2) numerical methods;
(3) analytical methods.

The methods based on the electro-thermal analogy m
it possible to rapidly estimate the temperature of the resis
layer but they are rough and do not allow one to determ
the temperature distribution in the sensor structure [3,4]

The numerical methods (the finite-element method [5–
the boundary-element method [8], and the finite-differe
method [9]) are the most frequently used to model the t
perature distribution in the thermal sensors. However, th
methods have the large amount of computations and th
dious work of problem definition. Furthermore, it is difficu
d

-

to use these methods in the further analytical proced
such as the analytical determination of the sensor para
ters and the analytical optimization of the sensor structu

The analytical methods have a number of the adv
tages over the numerical methods: smaller time of prob
definition; smaller amount of computations; simpler co
trol of simulation accuracy; use of the common mathem
ical software (MathCAD, Maple, MATLAB, MATHEMAT-
ICA). The simplified versions of the analytical methods
widely used by the firms producing resistive thermal s
sors to estimate the measurement error of these sensors
for example, [10]). To apply these methods to the complic
structures of thermal sensors they must be modified. Par
larly, in Refs. [11,12], the analytical method is proposed
developed which makes it possible to determine the temp
ture distribution in the multilayered parallelepiped structu
of heat-generating devices. However, this method does
allow one to take into account the convective and radiant
transfers and, therefore, it is not recommended for de
mining the temperature distribution in the resistive thin-fi
thermal sensors, where account must be taken of all wa
the heat transfer. In this connection, there is a need to
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velopment of the analytical methods suitable for modell
the temperature distribution in the resistive thin-film therm
sensors.

This paper presents such a method and demonstrat
use for modelling the temperature distribution in the c
crete sensor.

2. Analysis of the sensor structure

The resistive thin-film thermal sensors based on pure m
als or alloys have a meander form since the surface resis
of metal thin films is small and the form factor of the sens
exceeds 10. The top view of the sensor is shown in Fig. 1
When the sensor is used to measure a surface temper
it is glued or soldered to the surface of an object. The c
view of the sensor on the surface of an object is show
Fig. 1(b). The connective layer (glue layer or solder lay
has an influence on the temperature distribution in the
sor and this influence must be taken into account.

The analysis of the sensor structure and the mode
of the temperature distribution are based on the follow
assumptions that allow us to simplify the geometry of
sensor:

(1) An object under investigation is assumed to be mas
in comparison with the sensor and to have the large t
mal conductivity and the large heat capacity. It follo
that the surface temperature of the object is indepen
of the thermal processes in the sensor.

(2) The lateral surfaces of the sensor structure are assu
to be adiabatic. This assumption can be based as
lows. The heat spreading through the lateral surface
far less than the heat spreading through the upper
lower surfaces. This difference follows from the diffe
ence between their areas. The heat spreading thr
the lateral surfaces has the pronounced effect only
the temperature distribution in the domains near th
surfaces. The dimensions of the domains are comm
surable with the thickness of the sensor structure an
less than the length and the width of the structure. Th
fore, in modelling, the heat spreading through the lat
surfaces cannot be taken into account.

(3) The region with the metal pads has no influence
(i) the temperature distribution in the region with t
meander structure and (ii) the surface temperatur
the object. This assumption is based on the assump
(1) and (2). The pronounced interference between
regions of the sensor structure is appeared in the bo
ary domains whose dimensions are determined by
thickness of the sensor structure and are far less tha
length and the width of the regions. Therefore, based
this assumption, one can suppose that the boundar
tween the regions is adiabatic.
s

e,

d

-

The meander structure of the resistive thin-film therm
sensor has a number of the features. The first feature is
to the fact that, as can be seen from Fig. 1(b), the me
der structure has translation symmetry in thex-direction if
we do not take into account the sites where the meande
bends. It is obvious that the temperature distribution in
structure also has the translation symmetry. In this case
can neglect the temperature distribution in the sites wh
the meander has bends. These bends occupy the small a
comparison with the total area of the region with the me
der structure and have a negligible effect on the tempera
distribution in this region. Therefore, to find the tempe
ture distribution in the sensor it is enough to determine
temperature distribution in the unit domain of its mean
structure. The unit domain with the help of which one c
produce the meander structure of the sensor by mean
translation is shown in Fig. 1(c).

In its turn, the unit domain marked out in the mean
structure has the mirror symmetry. This feature of the u
domain allows us to consider the unit subdomain mar
out from the unit domain to determine the temperature
tribution in this domain. This unit subdomain is shown
Fig. 1(d).

The second feature of the resistive thin-film thermal s
sor is the smaller thickness of the resistive layer in comp
son with the thicknesses of the substrate and the conne
layer. The thickness of the resistive layer amounts usual
some tenth fraction of micrometer or less, while the thi
nesses of the substrate and the connective layer amou
some unit micrometers or more. In this connection, one c
not determine the temperature distribution in the resis
layer i.e. one can exclude this layer from the considerat
However, for operating the sensor, the resistive layer ge
ates the heat which must be taken into account in deter
ing the temperature distribution. To overcome the mentio
difficult we assume that instead of the resistive layer the
subdomain has the heat-generating boundary whose
power is equal to the heat power generated by the laye
this case, the structure of the unit subdomain can be repl
by the simpler equivalent structure with the heat-genera
boundary. This equivalent structure is shown in Fig. 1(e)

Thus, the determination of the temperature distributio
the resistive thin-film thermal sensor is reduced to the
termination of the temperature distribution in the equival
structure of the unit subdomain.

3. Temperature distribution in the equivalent structure
of the unit subdomain

To determine the temperature distribution in the unit s
domain we use the method proposed in Refs. [13,14]. In
method, the 2D rectangular structure is divided into a nu
ber of the rectangular regions with a homogeneous struc
and homogeneous boundary conditions. For each region
analytical expression for the temperature distribution is
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ps,
Fig. 1. Structure of the resistive thin-film thermal sensor and its unit domain and subdomain: (a) top view of the resistive thin-film thermal sensor, (b) cross view
of the resistive thin-film thermal sensor, (c) cross view of the unit domain, (d) cross view of the unit subdomain, (e) equivalent structure of the unit subdomain,
(1) resistive layer, (2) substrate, (3) connective layer, (4) object under investigation, (5) heat-generating boundary,(a) distance between the meander stri
(b) width of the meander strip,(ds) thickness of the substrate,(dc) thickness of the connective layer.
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termined using the Fourier method. Each heat flux den
between the adjacent regions is defined as the sum o
thogonal functions with unknown weighting coefficients.
order to find the unknown weighting coefficients the adjo
boundary conditions on the boundaries between the adja
regions are used.

The equivalent structure of the unit subdomain has a
tangular shape and consists of two layers (the substrate
the connective layer) whose properties are different.
upper boundary of the structure is the boundary with
heterogeneous boundary conditions. The boundary ha
heat-generating section. Therefore, the equivalent struc
t

d

of the unit subdomain should be divided into four regions
suggested in Fig. 2. In this case, each region has the hom
neous structure and the homogeneous boundary condi
The dimensions of the regions are:

region 1: l1 = b/2; b1 = ds;
region 2: l2 = a/2; b2 = ds;
region 3: l3 = b/2; b3 = dc;
region 4: l4 = a/2; b4 = dc.

However, in the structure, the regions 1 and 2 h
the boundaries (the upper boundary of each region)
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Fig. 2. Equivalent structure of the unit subdomain and its division into
gions.

the Newton boundary conditions. This feature complica
the determination of the temperature distribution since
method proposed in Ref. [13] can only be used for
structures with regions having the Dirichlet and/or Ne
mann boundary conditions. Nevertheless, this problem
be solved, if, on the mentioned boundaries, the Neum
boundary conditions are used. Then, in the expression
the temperature distribution in these regions, the additio
unknown heat flux densities are appeared. To determ
these heat flux densities through orthogonal functions w
unknown weighting coefficients the Newton boundary c
ditions on the upper boundaries should be used.

According to Ref. [13], the temperature distribution in t
four regions of the unit subdomain can be presented as
lows:

T1 = −δ
(1,2)
0 − δ

(1,a)
0 + δ

(1,3)
0

l1b1λ1

+ 2

l1b1λ1

∞∑
k=1

−(−1)kδ
(1,2)
0 − δ

(1,a)
k + δ

(1,3)
k

(kπ/l1)2

× cos

(
kπx1

l1

)

+ 2

l1b1λ1

∞∑
m=1

−δ
(1,2)
m − (−1)mδ

(1,a)
0 + δ

(1,3)
0

(mπ/b1)2

× cos

(
kπy1

b1

)
+ 4

l1b1λ1

×
∞∑

k=1

∞∑
m=1

−(−1)kδ
(1,2)
m − (−1)mδ

(1,a)
k + δ

(1,3)
k

(kπ/l1)2 + (mπ/b1)2

× cos

(
kπx1

)
cos

(
kπy1

)
(2)
l1 b1
T2 = −δ
(2,a)
0 + δ

(1,2)
0 + δ

(2,4)
0

l2b2λ2

+ 2

l2b2λ2

∞∑
k=1

−δ
(2,a)
k + δ

(1,2)
0 + δ

(2,4)
k

(kπ/l2)2
cos

(
kπx2

l2

)

+ 2

l2b2λ2

∞∑
m=1

−(−1)mδ
(2,a)
0 + δ

(1,2)
m + δ

(2,4)
0

(mπ/b2)2

× cos

(
kπy2

b2

)

+ 4

l2b2λ2

∞∑
k=1

∞∑
m=1

−(−1)mδ
(2,a)
k + δ

(1,2)
m + δ

(2,4)
k

(kπ/l2)2 + (mπ/b2)2

× cos

(
kπx2

l2

)
cos

(
kπy2

b2

)
(3)

T3 = 4Ts

∞∑
m=1

1

(2m − 1)π
sin

[
(2m − 1)πy3

2b3

]

+ 2

l3b3λ3

∞∑
m=1

(−1)mδ
(1,3)
0 − δ

(3,4)
m

[(2m − 1)π/2b3]2

× sin

[
(2m − 1)πy3

2b3

]

+ 4

l3b3λ3

∞∑
k=1

∞∑
m=1

(−1)mδ
(1,3)
k − (−1)kδ

(3,4)
m

(kπ/l3)2 + [(2m − 1)π/2b3]2

× cos

(
kπx3

l3

)
sin

[
(2m − 1)πy3

2b3

]
(4)

T4 = 4Ts

∞∑
m=1

1

(2m − 1)π
sin

[
(2m − 1)πy4

2b4

]

+ 2

l4b4λ4

∞∑
m=1

(−1)mδ
(2,4)
0 + δ

(3,4)
m

[(2m − 1)π/2b4]2

× sin

[
(2m − 1)πy4

2b4

]

+ 4

l4b4λ4

∞∑
k=1

∞∑
m=1

(−1)mδ
(2,4)
k + δ

(3,4)
m

(kπ/l4)2 + [(2m − 1)π/2b4]2

× cos

(
kπx4

l4

)
sin

[
(2m − 1)πy4

2b4

]
(5)

whereTj is the temperature of the regionj ; xj andyj are
the coordinates of the regionj ; lj and bj are the dimen-
sions of the regionj ; Ts is the surface temperature of a
object under investigation;λj is the thermal conductivity o
the regionj ; λ1 = λ2 = λs; λ3 = λ4 = λc; λs andλc are the
thermal conductivities of the substrate and the connec
layer, respectively;δ(j,t)

k andδ
(j,s)
m are the weighting coeffi

cients defining the heat flux densities through the bounda
between the regionsj andt and between the regionsj ands,
respectively;δ(j,a)

k are the weighting coefficients definin
the heat flux density through the boundary between the
gion j and the ambient air.

Eqs. (2)–(5) contain six types of the unknown weight
coefficients:δ(1,2)

m , δ
(1,a)

, δ
(1,3)

, δ
(2,a)

, δ
(2,4), and δ

(3,4)
m . To
k k k k
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determine these coefficients one can use four temper
equality conditions on the boundaries between the adja
regions and two Newton boundary conditions on the bou
aries between the regions 1 and 2 and the ambient air.
four equations for temperature equality on the bounda
between the adjacent regions can be obtained from the
lowing conditions:

T1|x1=l1 = T2|x2=0 (6)

T1|y1=0 = T3|y3=b3 (7)

T2|y2=0 = T4|y4=b4 (8)

T3|x3=l3 = T4|x4=0 (9)

The two equations for the Newton boundary conditio
on the boundaries between the regions 1 and 2 and the a
ent air should be considered in detail. The Newton bound
condition for the boundary between the region 1 and
ambient air, which is the heat-generating boundary, ca
written in the following form:

q(1,a) + qsh= h(T1|y1=b1 − Ta) (10)

whereq(1,a) is the heat flux density between the region
and the ambient air;qsh is the heat power per unit area of t
sensor, which is generated as a result of the self-heatin
a measuring current;h is the convective heat transfer coef
cient;Ta is the temperature of the ambient air.

The heat flux densityq(1,a) can be determined using th
equation for the heat flux density presented in Ref. [13]:

q(1,a) = 1

l1
δ
(1,a)
0 + 2

l1

∞∑
k=1

δ
(1,a)
k cos

(
kπx1

l1

)
(11)

The heat power per unit area of the resistive thin-fi
thermal sensor is given by

qsh= Pts

Sts
(12)

wherePts is the heat power generated by the sensor;Sts is
the area of the resistive layer. In its turn, the parametersPts
andSts are equal to

Pts = I2R = I2R0
[
1+ α(T1|y1=b1 − T0)

]
(13)

Sts ≈ lmdb = kfb
2 (14)

whereI is the measuring current;lmd is the length of the
middle line of the meander;b is the width of the meande
strip; kf is the form factor of the meander. In this case,
heat power per unit area of the sensor can be represen
the following form:

qsh= B0 + B1T1|y1=b1 (15)

where

B0 = I2R0(1− αT0)

kfb2
(16)

B1 = I2R0α

2
(17)
kfb
t

i-

n

Using Eqs. (11) and (15) the Newton boundary condit
for the boundary between the region 1 and the ambien
(Eq. (10)) can be rewritten as follows:

1

l1
δ
(1,a)
0 + 2

l1

∞∑
k=1

δ
(1,a)
k cos

(
kπx1

l1

)
+ B0 + B1T1|y1=b1

= h(T1|y1=b1 − Ta) (18)

The Newton boundary condition for the boundary b
tween the region 2 and the ambient air can be found
the same manner as for the boundary between the reg
and the ambient air. However, this boundary is not h
generating and the Newton boundary condition for it has
simpler form

1

l2
δ
(2,a)
0 + 2

l2

∞∑
k=1

δ
(2,a)
k cos

(
kπx2

l2

)

= h(T2|y2=b2 − Ta) (19)

Inserting the expressions for the temperatures (2)–(5
Eqs. (6)–(9), (18), and (19) yields the system of linear eq
tions concerning the unknown weighting coefficients. I
convenient to write this system in a matrix representatio

M� = � (20)

whereM is the matrix of the coefficients;� is the vector of
the unknown weighting coefficients;� is the vector of the
right parts.

The matrixM and the vectors� and� have the following
forms in a block matrix representation

M =




A(1,2)
m A(1,a)

k A(1,3)
k A(2,a)

k A(2,4)
k 0

B(1,2)
m B(1,a)

k B(1,3)
k 0 0 0

C(1,2)
m C(1,a)

k C(1,3)
k 0 0 C(3,4)

m

D(1,2)
m 0 0 D(2,a)

k D(2,4)
k 0

E(1,2)
m 0 0 E(2,a)

k E(2,4)
k E(3,4)

m

0 0 F(1,3)
k 0 F(2,4)

k F(3,4)
m



(21)

� =




�
(1,2)
m

�
(1,a)
k

�
(1,3)
k

�
(2,a)
k

�
(2,4)
k

�
(3,4)
m




(22)

� =




0
�

(1,a)
k

�
(1,3)
k

�
(2,a)
k

�
(2,4)
k
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The designation of the submatrices and the subvecto
given in Ref. [13].

Solving this system of linear equations makes it poss
to find the weighting coefficients. The determined weig
ing coefficients are used to calculate the temperature
tribution in the regions of the unit subdomain according
Eqs. (2)–(5).

4. Numerical results and discussion

The present method was applied to calculate the tem
ature distribution in the resistive thermal sensor based
platinum thin film.

A polyimide foil was chosen as the substrate. The thi
ness of the substrate was 20 µm. The thermal conductivi
polyimide was equal to 0.148 W·m−1·K−1. The polyimide
glue was used to fasten the sensor to the surface of an
ject. The thickness of the glue layer was chosen to be e
to 10 µm.

The meander structure of the sensor had the square s
with the following parameters. The width of the meand
strip was equal to 10 µm. The distance between mea
strips was equal to 10 µm. The form factor of the mean
structure was chosen to be equal to 136. The resistance
sensor was equal to 100� at the temperature of 273.15 K
The temperature resistance coefficient of the platinum
film was assumed to be 0.0034 K−1.

The value of the measuring current was equal to 1 m
The value of the convective heat transfer coefficient was c
sen to be equal to 5.6 W·m−2·K−1. The temperatures of th
ambient air and the surface temperature of the object u
investigation were assumed to be 300 K and 400 K, res
tively.

The overheating temperature distribution in the unit s
domain of the sensor with the above-mentioned parame
is presented in Fig. 3. The overheating temperature,�T , are
determined concerning the surface temperature of the o
as follows

�T = Tj − Ts (24)

The overheating temperature distribution along the up
boundary of the unit subdomain is shown in Fig. 4. This te
perature distribution is important since the temperature
the section of the upper boundary (region 1) is assume
be equal to the temperature of the meander strip. It is wo
while to compare the temperature of the resistive layer
meander strip) calculated by the present method with
value determined with the help of the lumped model ba
on the electro-thermal analogy. In the case of the lum
model, the overheating temperature of the resistive la
�Tlm, is equal to

�Tlm = [
R0I

2(1− αT0) + 2hkfb
2Ta

+ 2kfb
2λsλcTs/(dsλc + dcλs)

]
× [−αR0I

2 + 2hkfb
2

-
l

e

r

e

t

Fig. 3. Temperature distribution in the equivalent structure of the unit
domain: overheating temperature maps of the regions plotted by isoth

+ 2kfb
2λsλc/(dsλc + dcλs)

]−1 − Ts (25)

For the chosen parameters of the sensor, the nume
value of the overheating temperature calculated with
lumped model is�Tlm = 0.954 K. Comparing this value an
data obtained with the present model (Figs. 3 and 4) one
see that the estimation of the overheating temperature
the help of the lumped model leads to the understated va

The data of Figs. 3 and 4 indicate that the greatest v
of the overheating temperature is observed in the left
per corner of the unit subdomain. This point correspond
the centre of the meander strip. The value of the overhea
temperature in this point can be used as the characte
temperature to describe the absolute error of the senso
to the self-heating. Therefore, below we consider the de
dence of the overheating temperature in the centre of
meander strip,�Tcm, on the various parameters. During t
calculation of the dependence on one parameter, the o
parameters are assumed to be equal to the values de
above.
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Fig. 4. Overheating temperature distribution along the upper bounda
the equivalent structure.

Fig. 5. Overheating temperature in the centre of the meander strip as a
tion of the measuring current.

The dependence of the overheating temperature in
centre of the meander strip on the measuring curren
shown in Fig. 5. This dependence is like to the square
For the small measuring currents, the overheating temp
ture is negative. This indicates that the convective heat tr
fer predominates over the heat transfer through the subs
and the connective layer by thermal conduction and the t
perature in the centre of the meander strip becomes sm
than the surface temperature of the object.

Fig. 6 shows the dependence of the overheating temp
ture in the centre of the meander strip on the thermal con
tivity of the substrate. The feature of this dependence is
drastic decrease of the overheating temperature with inc
-

-

e

r

-

-

Fig. 6. Overheating temperature in the centre of the meander strip as a
tion of the thermal conductivity of the substrate.

Fig. 7. Overheating temperature in the centre of the meander strip as a
tion of the thickness of the substrate.

ing the thermal conductivity of the substrate, for the sm
values of the thermal conductivity. The further increase
the thermal conductivity does not lead to the visible decre
of the overheating temperature. This feature must be ta
into account in designing the resistive thin-film thermal s
sor when we want to decrease the absolute error due t
self-heating by means of increasing the thermal conduct
of the substrate.

The dependence of the overheating temperature in
centre of the meander strip on the thickness of the subs
is shown in Fig. 7. The overheating temperature varies
early with the thickness of the substrate.
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Fig. 8. Overheating temperature in the centre of the meander strip as a
tion of the convective heat transfer coefficient.

Fig. 9. Overheating temperature in the centre of the meander strip as a
tion of the surface temperature of the object under consideration.

Fig. 8 shows the dependence of the overheating tem
ature in the centre of the meander strip on the convec
heat transfer coefficient. The overheating temperature
creases linearly with increasing the convective heat tran
coefficient. For large values of the convective heat tran
coefficient, the overheating temperature can be negativ
this case, the convection heat transfer predominates an
temperature in the centre of the meander strip is smaller
the surface temperature of the object.

The dependence of the overheating temperature in
centre of the meander strip on the surface temperature o
object under investigation is shown in Fig. 9. The overhe
ing temperature varies linearly with increasing the surf
temperature.
-

-

e

Fig. 10. Overheating temperature in the centre of the meander strip
function of the width of the meander strip,a = 10 µm.

Fig. 11. Overheating temperature in the centre of the meander strip
function of the distance between the meander strips,b = 10 µm.

It is worthwhile to consider the dependencies of the ov
heating temperature in the centre of the meander strip o
construction parameters: the width of the meander stripb,
and the distance between the meander strips,a. These de-
pendencies are shown in Figs. 10 and 11, respectively
can be seen from these figures, the overheating temper
decreases with increasinga and b. The analysis of thes
dependencies indicates that the overheating temperatu
more susceptible to the change ofb thana, especially for the
small values of these parameters. This feature must be t
into account in designing the resistive thin-film thermal s
sor. To reduce the absolute error due to the self-heating
respectively, the overheating temperature it is worthwhil
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increase the width of the meander strip than the distance
tween the strips.

5. Conclusion

In this paper, the method of modelling the temperat
distribution in the resistive thin-film thermal sensors is p
sented. This method allows one to determine exactly
overheating temperature of the sensor and its absolute
due to the self-heating. The basic advantage of this me
is the more accurate estimate of the sensor error due t
self-heating.

The present method can be useful in designing the re
tive thin-film thermal sensors. With the help of this meth
the design of the sensors can be optimized to minim
their absolute error due to the self-heating. In addition,
method can be applied to calculate the overheating tem
ature and the absolute error due to the self-heating in o
types of resistive thin-film sensors (tensoresistive, phot
sistive, and magnetoresistive sensors).

Our investigation and the present practical results s
that this method can be used for creating CAD tools for
resistive thin-film thermal sensors. Its usage can be rea
with the help of the common mathematical software.
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